
Runtime Prediction of Filter Unsupervised
Feature Selection Methods

Teun van der Weij1, Venustiano Soancatl-Aguilar1,
Saúl Solorio-Fernández2

1 University of Groningen
Netherlands

2 Instituto Nacional de Astrof́ısica, Óptica y Electrónica,
Mexico

mailvanteun@gmail.com, v.soancatl.aguilar@rug.nl,

ssolori1@asu.edu

Abstract. In recent years, the speed and quality of data analysis
have been hindered by an increase in data size, an increase in data
dimensionality, and the expensive task of data labeling. Much research
has been conducted in the field of Unsupervised Feature Selection (UFS)
to counteract this hindrance. Specifically, filter UFS methods are popular
due to their simplicity and efficiency in counteracting performance
problems in unlabeled data analysis. However, this popularity resulted
in a great variety of filter UFS methods, each with their own advantages
and disadvantages, making it hard to choose an appropriate method for
a particular problem. Unfortunately, an inappropriate method choice can
lead to a decrease in research or project quality, and it can render data
analysis unfeasible due to time constraints. Importantly, terminating a
method’s analysis before completion means in most cases that no partial
results are obtained either. Previous works on the evaluation of filter
UFS methods focused mainly on assessing clustering and classification
performance. Although very useful, choosing an appropriate method
often requires knowledge about the method’s runtime as well. In this
paper, we study the runtimes of six popular filter UFS methods using
synthetic and real-world datasets. Runtime prediction models were
trained on 114 synthetic datasets and tested on 29 real-world datasets.
The models showed good performance on four out of the six methods.
Finally, we present general runtime guidelines for each method. To the
best of our knowledge, this is the first paper that investigates methods’
runtimes in this fashion.

Keywords: Feature selection, unsupervised feature selection, runtime
prediction, execution time prediction, filter methods.

1 Introduction

Feature Selection, also known as Attribute or Variable Selection, concerns
selecting a subset of the most relevant features from a dataset. Selecting the

45

ISSN 1870-4069

Research in Computing Science 150(8), 2021pp. 45–73; rec. 2021-05-22; acc. 2021-07-25

most relevant features can be useful to achieve three main goals: improve
prediction accuracy, faster predictions, and a better understanding of the
phenomena that the data represent [1]. The importance of Feature Selection
increases as the data grows in the number of objects and especially in the
number of features, yielding all sorts of problems relating to the “curse of
dimensionality” [2]. A high number of features requires more computational
resources; if many features need to be analyzed, the speed of both the
training and the predictions of a learning algorithm decrease. Furthermore,
an excess of features reduces generalization capabilities and may negatively
affect predicting performance [3]. Additionally, it is harder to understand the
underlying mechanisms that the data describes when many irrelevant features
clutter the relevant ones [1]. Feature Extraction is another closely related
dimensionality reduction strategy with similar advantages to Feature Selection.
However, Feature Extraction, which includes methods such as principal
component analysis, unclearly transforms the relevant features, complicating
the interpretation of the data [4, 5].

According to the availability of information in the data, datasets can be
classified as completely labeled, partially labeled, or completely unlabeled.
Fully labeled datasets require supervised methods, partially labeled require
semi-supervised methods, and unlabeled datasets require unsupervised feature
selection methods. The labels of objects in a dataset can be categorical, ordinal,
or continuous [6]. These labels can, for example, describe what kind of animal
the features represent, the place a bowler got in a bowling competition, or
how happy a person says she is. Such labels are often not available, especially
where high-dimensional data is present, such as in text mining, bioinformatics,
and social media [3, 7]. Moreover, data labeling is expensive in both time
and money because the labels need to be accurate, requiring qualified human
labor [8]. Therefore, for unlabeled data, Unsupervised Feature Selection (UFS)
methods are often used. Other important advantages of UFS methods include
that these methods perform well when prior knowledge is unavailable and that
they are less prone to overfitting [1]. UFS methods can be subdivided further
into three categories: filter, wrapper, and hybrid methods [6, 9]. Filter methods
are the fastest and most scalable methods, and they work independently of the
classifier. Wrapper methods use a classifier or learning algorithm to evaluate
a subset of features, which generally makes it much more computationally
expensive. Moreover, wrapper methods need to be entirely retrained when a
different classifier is used. Hybrid (embedded) methods aim to be a mixture of
filter and wrapper methods, trying to balance the two approaches to get the
benefits of both [9]. However, the integration of filter and wrapper approaches
is generally insufficient, leading to lower classification performance [7].

Because of the advantages of the filter approach, many methods have been
developed in this UFS category [6]. As a consequence, choosing an appropriate
method for the task at hand can be time-consuming and difficult. A choice of
a UFS method is important because of two reasons. First, one wants to obtain

46

Teun van der Weij, Venustiano Soancatl-Aguilar, Saúl Solorio-Fernández

Research in Computing Science 150(8), 2021 ISSN 1870-4069

the best possible insight from the data, which entails optimal understanding,
optimal clustering and classification performance. Missed or uncertain insights
might result in less fruitful research. Second, there is limited time available for all
research. Depending on how limited the time is, a method must be selected that
operates within these time constraints. Problems arise especially if it is unknown
a priori how long these methods take to analyze a dataset. The runtime of a
method analyzing a certain dataset could take several days, and larger datasets
might take months or longer, even with fast hardware and software. The setup
of a research project must be adjusted to the runtime of a method, which can
mean sacrificing clustering and classification performance for runtime gains.

Solorio-Fernández et al. [7] saw the lack of and need for a comprehensive
empirical study to enable users to choose an appropriate filter UFS method.
The authors systematically analyzed the performance of 18 filter UFS methods,
which were applied on 75 datasets. They also scored the methods based on
clustering and classification performance. Consistent with the literature, the
authors found that statistical-based methods generally had the worst clustering
and classification performance, but they were the quickest methods. On the other
hand, multivariate spectral/sparse-learning-based methods had significantly
higher scores for clustering and classification, but they were substantially
time-consuming. Furthermore, Solorio-Fernández et al. [7] reported the runtimes
for every method ran on a dataset, which illustrated that some methods analyze
a dataset in fractions of a second and some take more than seven days. As
time constraints affect research quality, and Solorio-Fernández et al. [7] showed
that there is a high variation in runtimes between methods, further research on
method runtimes is needed to make a good a priori decision for a certain UFS
method. Additionally, the number of objects also affects the runtime, as methods
need to analyze more data. Moreover, datasets with millions and trillions of
features already exist, for example, the MovieLens dataset (over 20 million
objects) and the Google Books Ngram dataset (over 10 billion objects) [10,
11]. Furthermore, the feature sizes are very likely to further increase according
to Bolón-Canedo et al. [12]. So, even if the runtimes shown by Solorio-Fernández
et al. [7] are not problematic with maximums of 12960 objects and 2283 features,
runtime problems are bound to arise with much bigger dataset sizes. Moreover,
terminating a running method before completion means that no partial results
can be obtained unless complicated changes to the methods are made.

To help users choose an appropriate method with respect to these runtimes
issues, we investigate six popular UFS methods by predicting their runtimes
based on the number of objects and features of a dataset. As a result, we
contribute to the runtime knowledge of filter UFS methods by providing
prediction models and general runtime guidelines. We examine the runtime
performance of the six filter UFS methods available in the scikit-feature package
created by Li et al. [3], which contains the implementation of some classical,
relevant and more cited methods in the literature. We now present a brief
overview of these six methods. The runtime prediction of the six methods will
be discussed in the Methodology section.

47

Runtime Prediction of Filter Unsupervised Feature Selection Methods

Research in Computing Science 150(8), 2021ISSN 1870-4069

The rest of the paper is organized as follows: Section 2 describes the filter UFS
methods analyzed in this study. Section 3 describes the evaluation methodology
used in our experiments. Section 4 reports the experimental results. Section 5
discusses the main insights and the general runtime observations derived from
our experiments. Finally, Section 6 concludes the paper and provides some
directions for future work.

2 Filter UFS Methods

According to Alelyani et al. [4] and Solorio-Fernández et al. [6, 7], filter
UFS methods can be categorized into univariate and multivariate methods.
We describe the key characteristics and the corresponding methods of both
categories in Sections 2.1 and 2.2.

2.1 Univariate Methods

Univariate methods evaluate features separately and score a feature based
on a certain criterion. Consequently, these methods do not have to solve the
computationally expensive combinatorial optimization problem of selecting
a feature subset [13]. Therefore, relevant features are found relatively quick.
However, redundant features (those highly similar to other features) cannot be
filtered out because features are not compared to other features, potentially
leading to superfluous features in the selected set of features.

Low Variance: This relatively simple method ranks the features based
on their variance [5, 14]. The underlying idea is that features that differ more in
value are more relevant to uncover the underlying mechanisms in a dataset and
to help differentiate instances between different classes [3]. Features with a low
variance often do not carry much relevant information and do not differentiate
between classes [7].

Laplacian Score: This method developed by He et al. [15] scores the
importance of a feature by analyzing how well it preserves the locality. The
Laplacian matrix is derived from the distance between data points, so the
method can capture and analyze the local structure in the data space, which is
often more important than the global structure [15]. Each feature is individually
scored, and the top k features with the lowest Laplacian Score are selected [3].

SPEC: SPECtrum decomposition, created by Liu et al. [5], extends on
the Laplacian Score method and is also built on a similar idea: “a feature that
is consistent with the data manifold structure should assign similar values to
instances that are near each other” [3]. This method ranks the features based
on a consistency score calculated by three different criteria [5].

48

Teun van der Weij, Venustiano Soancatl-Aguilar, Saúl Solorio-Fernández

Research in Computing Science 150(8), 2021 ISSN 1870-4069

2.2 Multivariate Methods

A multivariate approach entails that subsets of the feature set are evaluated and
scored together. Because of this, they are able to filter out both irrelevant and
redundant features. However, selecting a (sub)optimal subset of a set of features
is computationally expensive, as illustrated by the “subset sum” problem [16].
Even though the multivariate methods try to approach this problem efficiently,
multivariate methods are generally much slower than univariate methods [4, 6, 7].

MCFS: The Multi-Cluster Feature Selection method developed by Cai
et al. [13] selects features “that can cover the multi-cluster structure of the data
where spectral analysis is used to measure the correlation between different
features” [3]. As with previous methods, a Laplacian Matrix is constructed.
The MCFS method takes the first k eigenvectors of this Laplacian matrix
and calculates the importance of features by a regression model with l1 norm
regularization [13]. After solving the regression problems, a coefficient is
computed where a high MCFS score means that the feature is important [3].

UDFS: Yang et al. [17] propose the Unsupervised Discriminative Feature
Selection method, which uses both the discriminative information and feature
correlations to select features [3, 7]. UDFS efficiently optimizes the l2,1 norm
regularized minimization problem with orthogonal constraint Yang et al. [17].
The UDFS method trains a linear classifier which obtains the highest local
discriminative score for all features [3]. As with MCFS, the higher the score,
the more important the feature is [17].

NDFS: The Nonnegative Discriminative Feature Selection method by Li et al.
[18] first uses spectral analysis with nonnegative and orthogonal constraints to
learn pseudo-class labels, and these labels are defined as nonnegative real values.
Afterwards, the authors introduce a novel iterative algorithm to efficiently solve
the l2,1 norm regularization problem NDFS creates. The top k features that
most relate to the pseudo-class labels are selected [18].

3 Methodology

The general protocol of our study is as follows: First, we measured the runtime
of the six UFS methods on 114 synthetic datasets. Then, we used four different
regression models to fit these runtimes based on the number of objects and
features of a dataset. Subsequently, we evaluated the performance of these
regression models using 10-fold cross-validation. Finally, we tested the best
method per model on 29 real-world datasets.

First, we discuss the synthetic and the real-world datasets. Second, we
elaborate on the four regression models and how we evaluate them. Lastly, we
discuss the software and hardware specifications used in this study, including the
parameter settings for the methods, the way of measuring runtimes, and details
on the CPUs.

49

Runtime Prediction of Filter Unsupervised Feature Selection Methods

Research in Computing Science 150(8), 2021ISSN 1870-4069

3.1 Datasets

To construct good models, good training data is needed. In our case, good
training data means a considerable number of datasets with spread-out
dimensions. Runtime patterns become more apparent for both humans and
runtime prediction models when they evenly cover a larger part of the space
of the number of objects and features. Therefore, to get training data that
meets these conditions, we generated synthetic datasets SD with stepwise
differing dimensions in both the number of objects and the number of features.
These dimensions range from 500 objects and 500 features until, but not
including, 10,000 objects and 10,000 features with a step size of 500. However,
we constrained the maximum size per dataset to 10,000,000 data points. The
number of data points is estimated as the product of the number of objects and
the number of features. This means that datasets were only generated when
this product is lower than or equal to the maximum size. Mathematically:

SD = {Dij |i = 500, 1000, 1500, . . . , 9500;

j = 500, 1000, 1500, . . . , 9500;

i× j ≤ 10, 000, 000},
(1)

whereDij represents a dataset composed of i objects and j features. For example,
a dataset of 8,000 objects and 4,000 features would not be generated, but a
dataset with 4,000 objects and 2,500 features would have been generated. This
resulted in 114 synthetic datasets in total.

The maximum size constraints for objects and features were chosen to keep
the runtimes within the time and resource limits of the study. Furthermore, the
datasets were generated with certain parameters, which are described in detail in
Table 1. Note that the hypercube size value indicates the multiplication factor
of the hypercube. This factor influences the spread of clusters/classes, which
might make it easier for methods to converge. The effect of the hypercube size
multiplication factor on the runtime is not part of our research. However, we
varied this factor to improve the generalization of our runtime prediction models.
Furthermore, the dataset generation parameter values were designed in a way
to mimic real-world datasets. As a last note, all the default settings3 were used
for the parameters not described in the Table 1.
In addition to the synthetic datasets, we tested the runtime prediction models
on real-world datasets to verify their performance. These were taken from the
ASU Feature Selection Repository [3]. These datasets are all different types of
data: text, face images, handwritten images, biological, amongst others. Further
details of these real-world datasets can be found in Table 2. Both the synthetic
and the real-world datasets were standardized to have a mean of 0 and a standard
deviation of 1, as recommended by [14].

3 Further general description and default settings of the parameters can be
found on https://scikit-learn.org/stable/modules/generated/sklearn.datasets.make
classification.html.

50

Teun van der Weij, Venustiano Soancatl-Aguilar, Saúl Solorio-Fernández

Research in Computing Science 150(8), 2021 ISSN 1870-4069

https://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_classification.html
https://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_classification.html

Table 1. Synthetic dataset details.

Index Objects Features
Informative
features

Redundant
features

Classes
Clusters
per class

Randomly
labeled

Hypercube
size

1 500 500 231 43 28 3 0.018 1.533
2 1000 500 221 174 19 1 0.435 0.615
3 1500 500 89 71 27 1 0.222 2.451
4 2000 500 8 171 3 3 0.256 2.365
5 2500 500 141 116 10 2 0.167 2.008
6 3000 500 189 144 27 1 0.225 0.872
7 3500 500 8 31 29 1 0.154 1.247
8 4000 500 112 163 3 2 0.258 0.987
9 4500 500 110 5 11 1 0.262 1.234
10 5000 500 83 89 18 3 0.416 0.917
11 5500 500 165 176 10 2 0.338 1.693
12 6000 500 158 221 18 3 0.137 2.032
13 6500 500 183 227 27 1 0.281 1.431
14 7000 500 75 23 3 2 0.189 1.319
15 7500 500 121 181 10 3 0.465 1.470
16 8000 500 179 196 3 2 0.049 1.185
17 8500 500 183 78 13 1 0.470 2.369
18 9000 500 122 78 6 3 0.497 1.009
19 9500 500 107 238 3 2 0.286 1.633
20 500 1000 58 291 3 3 0.278 1.384
21 1000 1000 333 140 8 3 0.371 1.213
22 1500 1000 98 361 16 2 0.467 2.117
23 2000 1000 85 128 23 2 0.437 0.744
24 2500 1000 357 406 8 1 0.375 1.575
25 3000 1000 262 46 16 1 0.323 0.886
26 3500 1000 481 188 13 1 0.020 0.946
27 4000 1000 478 344 8 1 0.088 0.747
28 4500 1000 38 31 2 2 0.310 0.808
29 5000 1000 373 466 22 3 0.065 1.299
30 5500 1000 125 334 30 1 0.040 0.736
31 6000 1000 319 196 22 3 0.232 0.675
32 6500 1000 387 472 12 1 0.348 0.608
33 7000 1000 429 294 10 3 0.097 2.313
34 7500 1000 69 200 18 1 0.059 0.737
35 8000 1000 195 181 16 2 0.045 0.546
36 8500 1000 184 353 8 3 0.013 0.837
37 9000 1000 370 113 10 2 0.420 2.442
38 9500 1000 322 485 21 3 0.059 1.728
39 500 1500 541 182 24 1 0.049 1.962
40 1000 1500 398 689 18 2 0.072 0.687
41 1500 1500 288 138 2 1 0.117 1.993
42 2000 1500 190 564 8 2 0.459 2.122
43 2500 1500 184 330 20 3 0.485 0.568
44 3000 1500 703 285 12 3 0.243 2.411
45 3500 1500 312 598 17 2 0.305 2.156

51

Runtime Prediction of Filter Unsupervised Feature Selection Methods

Research in Computing Science 150(8), 2021ISSN 1870-4069

Table 1 continued from previous page.

Index Objects Features
Informative
features

Redundant
features

Number
of classes

Clusters
per class

Randomly
labeled

Hypercube
size

46 4000 1500 654 118 11 2 0.286 1.310
47 4500 1500 412 31 24 1 0.267 2.109
48 5000 1500 581 455 9 3 0.288 1.150
49 5500 1500 219 73 30 3 0.223 1.824
50 6000 1500 51 504 6 3 0.083 1.339
51 6500 1500 656 586 4 3 0.313 1.653
52 500 2000 546 537 9 1 0.108 0.502
53 1000 2000 379 388 25 1 0.303 1.181
54 1500 2000 217 776 10 1 0.075 0.620
55 2000 2000 726 721 25 2 0.439 1.016
56 2500 2000 829 711 3 3 0.451 0.669
57 3000 2000 485 258 22 3 0.477 1.955
58 3500 2000 778 506 29 1 0.248 2.167
59 4000 2000 413 495 19 3 0.467 1.704
60 4500 2000 238 526 19 1 0.200 1.840
61 5000 2000 238 514 29 2 0.234 1.230
62 500 2500 606 677 20 3 0.227 1.454
63 1000 2500 1056 1025 21 3 0.037 2.085
64 1500 2500 1116 990 8 3 0.433 1.157
65 2000 2500 623 1208 16 2 0.296 0.744
66 2500 2500 501 757 8 1 0.379 1.178
67 3000 2500 257 468 5 3 0.221 0.800
68 3500 2500 1191 840 10 1 0.499 2.377
69 4000 2500 399 281 9 1 0.470 2.127
70 500 3000 826 732 19 3 0.139 2.468
71 1000 3000 654 245 16 3 0.422 1.896
72 1500 3000 646 967 6 1 0.339 2.058
73 2000 3000 765 631 25 2 0.011 2.286
74 2500 3000 1048 668 19 1 0.236 1.702
75 3000 3000 1006 1140 16 3 0.261 2.370
76 500 3500 1445 41 10 3 0.309 2.364
77 1000 3500 26 1685 17 1 0.134 1.301
78 1500 3500 574 451 17 1 0.269 1.729
79 2000 3500 1047 280 8 1 0.051 1.645
80 2500 3500 162 407 21 2 0.192 1.441
81 500 4000 1445 1043 29 2 0.243 2.244
82 1000 4000 233 57 27 2 0.063 0.848
83 1500 4000 1474 222 11 3 0.453 1.054
84 2000 4000 1727 488 20 1 0.067 2.186
85 2500 4000 1387 1555 8 3 0.389 1.156
86 500 4500 73 1693 6 2 0.198 2.403
87 1000 4500 75 1074 3 2 0.364 1.640
88 1500 4500 699 1067 7 1 0.125 0.544
89 2000 4500 839 209 21 3 0.257 1.706
90 500 5000 1496 1588 2 2 0.058 0.789
91 1000 5000 2122 1717 4 3 0.499 0.654

52

Teun van der Weij, Venustiano Soancatl-Aguilar, Saúl Solorio-Fernández

Research in Computing Science 150(8), 2021 ISSN 1870-4069

Table 1 continued from previous page.

Index Objects Features
Informative
features

Redundant
features

Number
of classes

Clusters
per class

Randomly
labeled

Hypercube
size

92 1500 5000 2357 1980 4 2 0.164 0.972
93 2000 5000 384 1143 14 2 0.295 2.265
94 500 5500 875 1162 3 3 0.028 1.483
95 1000 5500 2526 77 3 1 0.217 1.124
96 1500 5500 1439 1493 23 2 0.475 1.664
97 500 6000 2028 879 28 2 0.497 1.459
98 1000 6000 933 2944 5 3 0.068 1.112
99 1500 6000 2248 2935 3 2 0.179 1.283
100 500 6500 480 636 27 2 0.255 1.326
101 1000 6500 453 3142 29 2 0.206 1.425
102 1500 6500 2920 2502 20 1 0.402 1.608
103 500 7000 1317 1030 25 3 0.068 1.294
104 1000 7000 45 589 22 2 0.060 1.066
105 500 7500 187 3440 18 3 0.037 1.815
106 1000 7500 2835 323 18 2 0.334 1.335
107 500 8000 266 690 21 2 0.470 1.573
108 1000 8000 2605 2334 14 1 0.434 0.574
109 500 8500 2630 2774 25 3 0.440 1.432
110 1000 8500 3451 3706 23 1 0.037 0.742
111 500 9000 661 2287 18 3 0.337 1.524
112 1000 9000 2150 3700 19 3 0.266 2.206
113 500 9500 4749 3582 14 3 0.482 1.719
114 1000 9500 4330 2531 19 2 0.127 1.931

3.2 Runtime Prediction Models

For our experiments, we use four models, namely simple linear regression,
multiple linear regression, power regression, and exponential regression. We use
these relatively simple models for the three following reasons:

1. The number of objects and the number of features of a dataset are the only
two independent variables in our study. Therefore, models that sophistically
select or independently weight variables are excessive.

2. We assume that users generally want to know a good runtime approximation
of a method in terms of seconds, hours, days, months, or years. Therefore,
a runtime approximation would be sufficient to help users in choosing an
appropriate filter UFS method, which simpler models can give. How many
seconds or days exactly it will take will likely be less relevant.

3. Precise runtime prediction of UFS methods running in different environments
is out of the scope of this paper because it is expensive in both time and
hardware resources. Runtime predictions vary based on the environment in
which the methods are run due to different hardware arrangements and other
tasks being run in that environment. Simple models can more easily use and
adapt to their own environment.

53

Runtime Prediction of Filter Unsupervised Feature Selection Methods

Research in Computing Science 150(8), 2021ISSN 1870-4069

Table 2. Real-world datasets.

Index Name Number of objects Number of features Number of classes

1 Isolet 1560 617 26
2 Yale 165 1024 15
3 OLR 400 1024 40
4 WarpAR10P 130 2400 10
5 Colon 62 2000 2
6 WarpPIE10P 201 2420 10
7 Lung 203 3312 5
8 COIL20 1440 1024 20
9 Lymphoma 96 4026 9
10 GLIOMA 50 4434 4
11 ALLAML 72 7129 2
12 Prostate-GE 102 5966 2
13 TOX-171 171 5748 4
14 Leukemia 72 7070 2
15 Nci9 60 9712 9
16 Carcinom 174 9182 11
17 Arcene 200 10000 2
18 Orlraws10P 100 10304 10
19 Pixraw10P 100 10000 10
20 RELATHE 1427 4322 2
21 PCMAC 1943 3289 2
22 BASEHOCK 1993 4862 2
23 CLL-SUB-111 111 11340 3
24 GLI-85 85 22283 2
25 SMK-CAN-187 187 19993 2
26 USPS 9298 256 10
27 Madelon 2600 500 2
28 Lung-small 73 325 7
29 Gisette 7000 5000 2

The three reasons above-mentioned lead us to use simple models that are easy
to understand. From the simpler models, we selected those which were expected
to perform well based on visual inspection of the runtimes. Additionally, we
selected models based on the time complexity of a method, which were only
available for the SPEC and MCFS methods.

In the following subsections, we describe the runtime prediction models used
in our experiments. It is important to mention that for simple and multiple
linear regression models, the objective functions were given, whereas we merely
present the model’s predicted runtime per sample for power regression and
exponential linear regression. Moreover, for all models, we do not estimate a
y-intercept because we expect the runtime to approach 0 when the number of
objects and features approach 0. Using a y-intercept might result in overfitting
on the training data and worse values for the remaining parameters.

54

Teun van der Weij, Venustiano Soancatl-Aguilar, Saúl Solorio-Fernández

Research in Computing Science 150(8), 2021 ISSN 1870-4069

Lastly, all the runtimes and the corresponding errors are presented and
calculated in seconds throughout the whole paper.

Simple linear regression Let yi and βxi (i = 1, ..., n, with n denoting the
number of samples) be the true and the fitted runtime, respectively. A sample
consists of a dataset and the corresponding true runtime of one method. The
criteria of fitting S is when the sum of squared residuals of the linear regression
model is minimal, i.e.:

S(β) =

n∑
i=1

ε̂2i =

n∑
i=1

(yi − βxi)
2, (2)

where the coefficient β is the slope of the linear regression line tuned to minimize
the residual sum of squares between the true and fitted runtimes, ε̂2i denotes the
squared fit error of sample i, and xi is defined as the product of the number of
objects and features of the dataset of sample i (the total number of data points
of a dataset).

Multiple linear regression Similar to Equation 2, the objective function S
of the multiple linear regression model is defined as:

S(β1, β2) =

n∑
i=1

ε̂2i =

n∑
i=1

(yi − β1xi1 − β2xi2)
2, (3)

where the coefficients β1 and β2 denote the corresponding slopes of the regression
lines of xi1 and xi2 which are fitted to minimize the residual sum of squares, yi
and ε̂2i are defined the same as in Equation 2, and xi1 denotes the number of
objects and xi2 represents the number of features of the sample dataset i.

Power regression The power regression model best models situations where
the runtime equals the independent predictor variables raised to a power. As
previously described, Equation 4 represents the fitted runtime of one sample.
Consequently, the power regression model is defined as:

ŷ = β1x
β2

1 xβ3

2 , (4)

where ŷ denotes the fitted runtime, x1 and x2 denote the number of objects
and features of a dataset, respectively, and the parameters β1, β2 and β3 are
minimized with the Trust Region Reflective algorithm [19].

This function is inspired by both visual inspection of the method runtimes
and the time complexity of the SPEC and MCFS methods. It allows different
effects of both object and feature numbers through β2 and β3, but they still
influence each other because they are multiplied. In other words, the effect of
the number of objects on the runtime is partially determined by the number of
features and vice versa.

55

Runtime Prediction of Filter Unsupervised Feature Selection Methods

Research in Computing Science 150(8), 2021ISSN 1870-4069

Exponential regression This model combines exponential and linear
regression. As with Equation 4, Equation 5 represents the fitted runtime. The
Exponential and Linear regression model is defined as:

ŷ = β1e
(β2x1)β3x2, (5)

where ŷ denotes the fitted runtime, x1 can either be the number of objects or
the number of features of a dataset and x2 is the remaining option, and β1, β2

and β3 are minimized with the Trust Region Reflective algorithm.
The design of this model is set up to let x1 have a strong exponential influence

on the runtime prediction and x2 to have a secondary linear role. These roles
are inspired by the plots presented in the results section and more detailed
investigation of the effect on the runtime by only changing either objects or
features sizes. From now on, we refer to the exponential regression model with
x1 denoting the number of objects and x2 denoting the number of features
as Expobjects. Similarly, we refer to the exponential regression model with x1

denoting the number of features and x2 denoting the number of objects as
Expfeatures.

3.3 Model Evaluation Criteria

The performance of the runtime prediction models on the synthetic datasets is
evaluated by 10-fold cross-validation, as recommended in the literature [20–22].
Additionally, we evaluate the performance of the best runtime prediction models
tested on the real-world datasets. Both the cross-validation folds and the
performance on the test set are scored with two error measures, namely Mean
Absolute Error (MAE) and the Root Mean Squared Error (RMSE).

Let yi and ŷi (i = 1, ..., n, with n denoting the number of samples) be the
true and the fitted runtime, respectively. The MAE and RMSE measures are
defined as follows:

MAE(y, ŷ) =
1

n

n∑
i=1

|yi − ŷi| , (6)

RMSE(y, ŷ) =

√√√√ 1

n

n∑
i=1

(yi − ŷi)2, (7)

where y and ŷ denote all n true and fitted runtimes of one method, respectively.
MAE represents the average prediction error and is not prone to outliers. In
contrast, RMSE is sensitive to outliers because the error is squared initially [22,
23]. The combination of MAE and RMSE provides information on the origin
of the error values. If the MAE and the RMSE are relatively close together,
the prediction errors are relatively even in size across the test sets. If the error
measure values lie relatively far apart, it means that some runtime prediction
errors were much bigger than others.

56

Teun van der Weij, Venustiano Soancatl-Aguilar, Saúl Solorio-Fernández

Research in Computing Science 150(8), 2021 ISSN 1870-4069

3.4 Software and Hardware Specifications

For our experiments, we use the six UFS methods available on the ASU Feature
Selection Repository [3], and we adapted4 them to make them suitable for the
newer versions of Python and the machine learning package scikit-learn [24].
As mentioned before, these methods belong to the most used and most cited
methods in the literature, and they are a good representation of the variety
among filter UFS methods (see the taxonomy in Solorio-Fernández et al. [6]).
We used the default parameter settings given in the ASU Feature Selection
Repository for the six methods [3]. Additionally, each method selects 100 features
from the given dataset, apart from the Low Variance method. The Low Variance
method selects the features with a variance higher than p(1− p), where p is the
variance threshold. We used the default setting of p = 0.1. The runtime of a
method on a dataset is determined by the time it took the methods to return
the selected features from the time the data was passed to the method. The
timing was done with the time function of the time module in Python.

The experiment was run on the Peregrine compute cluster of the University
of Groningen, which made it possible to run the methods on the quantity and
dimensions of the datasets as previously described. Moreover, a compute cluster
provides the additional advantage of more reliable runtimes because the system
is less cluttered by other tasks demanding a machine’s resources, such as software
updates and antivirus programs. To run something on a compute cluster, one
must create a job script to specify what needs to be done. The univariate methods
were used to analyze all datasets in one job, which in our case means that the
methods analyzed all the datasets consecutively on the same node and CPU.
For the slower multivariate methods, we submitted many individual jobs where
the methods analyzed one to three datasets at a time, depending on expected
and observed runtime. This division of datasets onto many jobs allowed us to
get the runtime data in a reasonable period of time.

All these jobs were run on Intel Xeon E5 2680v3 CPUs @ 2.5 GHz. Because
not all cores are in use all the time, the clock speed could be as high as 3.3
GHz. Furthermore, the jobs were run with 8 GB of reserved memory. The only
exceptions to this are the jobs for UDFS and NDFS, where they analyzed the
GLI-85 and the SMK-CAN-187 datasets for which they could use up to 64 GB
of memory. 8 GB memory resulted in memory shortage errors. The OS of the
Peregrine high-performance cluster when running the experiment was CentOS
Linux, release 7.8.2003. The versions of the Python packages are available in the
requirements text file on the GitHub page of this paper.

4 Experimental Results

In this section, we present the evaluation of the runtime prediction models. First,
we describe the figures and tables. Afterwards, the methods are discussed in the

4 Further details on the specific requirements and adaptations can be found on the
GitHub repository of this paper https://github.com/FeatureSelection/UFS

57

Runtime Prediction of Filter Unsupervised Feature Selection Methods

Research in Computing Science 150(8), 2021ISSN 1870-4069

https://github.com/FeatureSelection/UFS

same order as in Section 2, i.e., Low Variance, Laplacian Score, SPEC, MCFS,
UDFS, and NDFS. Each method is discussed based on the observed patterns
on Figures 1, 2 and 3, which helped in the design of the models. Afterwards,
we assessed the models by using the error criteria presented in Table 3. Finally,
we present the final runtime prediction model for each method based on this
analysis and test them on the real-world datasets visible in Figure 4 and Tables
4 and 5.

4.1 Description of Figures and Tables

The plots with the runtimes of each method applied on the synthetic datasets
are shown in Figures 1, 2 and 3. The position of the points on the vertical axis
represents the time a method took to analyze a dataset. Additionally, there
are legends encoded by color which represent the category of the points in the
figure. Figures 1, 2, and 3 differ in what the x-axis represents. Figure 1 has the
number of objects of the analyzed dataset on the x-axis. The number of features
of the same dataset is represented by the size of the point with the principle of
the bigger the point, the higher the number of features. In Figure 2, the x-axis
represents the number of features and the point size represents the number of
objects. Lastly, in Figure 3 the x-axis represents the number of data points of a
dataset (the product of objects and features).

For Figures 1 and 2 it is important to realize that as the x-axis increases
in value, the number of runtime points gradually decreases. This is the effect
of creating the synthetic datasets with a maximum of 10,000,000 data points
per dataset. As a result, in Figures 1 and 2 the runtime does not seem to
increase as quickly as it perhaps should. To combat this potentially misleading
representation, the third variable (the number of features or the number of
objects) is represented by the size of the data point, as described in the previous
paragraph. Figures 1, 2 and 3 also include the fitted runtimes of the best runtime
prediction model for each method. These fitted runtimes are only plotted in the
figure with the most runtime determining factor as value on the x-axis. The
best runtime prediction models will be discussed in Section 4.2. Figure 4 shows
the true runtimes of each method applied on the real-world datasets and the
predicted runtime by the best model(s). For Low Variance, UDFS and NDFS,
more information was needed to pick the best model, so the predictions of those
models are both plotted in Figure 4. Notice that the x-axis differs per plot; the
independent variable with the most impact on the runtime is presented on the
x-axis.

Table 3 shows the mean scores of the 10-fold cross-validation procedure for
each combination of method and prediction model for the synthetic datasets.
Notice that all but the UDFS and NDFS methods are rounded to three decimals.
UDFS and NDFS scores are integers because decimals are unnecessary with
numbers over a thousand in our case. Furthermore, the nonlinear model has
two scores, one where x1 = number of objects (Expobjects) and one where x1 =
number of features (Expfeatures) as defined in Equation 5. Table 4 complements
Figure 4 by representing the performance of the runtime prediction models. The

58

Teun van der Weij, Venustiano Soancatl-Aguilar, Saúl Solorio-Fernández

Research in Computing Science 150(8), 2021 ISSN 1870-4069

0.00

0.05

0.10

0.15

0.20

0.25

Low Variance

0

5

10

15

20

25

Laplacian Score

True runtimes
Power model prediction

0

200

400

600

800

1000

SPEC

0

200

400

600

800

1000

MCFS

2000 4000 6000 8000

0

20000

40000

60000

80000

100000
UDFS

2000 4000 6000 8000

0

10000

20000

30000

40000

50000

60000

70000

80000
NDFS

Objects

R
un

tim
e

in
 s

ec
on

ds

Fig. 1. Runtime results in seconds with objects as x-axis for each method. The
legend in one plot describes every plot in the figure. The model that best predicts
a method’s runtime is also shown. For more details, see Section 4.1.

59

Runtime Prediction of Filter Unsupervised Feature Selection Methods

Research in Computing Science 150(8), 2021ISSN 1870-4069

0.00

0.05

0.10

0.15

0.20

0.25

Low Variance

0

5

10

15

20

25

Laplacian Score

0

200

400

600

800

SPEC

0

200

400

600

800

1000

MCFS

2000 4000 6000 8000

0

20000

40000

60000

80000

100000

120000
UDFS

True runtimes
Power model prediction
EL prediction

2000 4000 6000 8000

0

20000

40000

60000

80000

NDFS

Features

R
un

tim
e

in
 s

ec
on

ds

Fig. 2. Runtime results in seconds with features as x-axis for each method. The
legend in one plot describes every plot in the figure. The models that best predict
a method’s runtime are also shown. For more details, see Section 4.1.

60

Teun van der Weij, Venustiano Soancatl-Aguilar, Saúl Solorio-Fernández

Research in Computing Science 150(8), 2021 ISSN 1870-4069

0.00

0.05

0.10

0.15

0.20

0.25

Low Variance

True runtimes
Simple linear Regression prediction
Power model prediction

0

5

10

15

20

25

Laplacian Score

0

200

400

600

800

SPEC

0

200

400

600

800

1000

MCFS

0.0 0.2 0.4 0.6 0.8 1.0
1e7

0

20000

40000

60000

80000

100000
UDFS

0.0 0.2 0.4 0.6 0.8 1.0
1e7

0

10000

20000

30000

40000

50000

60000

70000

80000
NDFS

Data points

R
un

tim
e

in
 s

ec
on

ds

Fig. 3. Runtime results in seconds with objects as x-axis for each method. The
legend in one plot describes every plot in the figure. The models that best predict
a method’s runtime are also shown. For more details, see Section 4.1.

61

Runtime Prediction of Filter Unsupervised Feature Selection Methods

Research in Computing Science 150(8), 2021ISSN 1870-4069

Table 3. Synthetic data error scores for the prediction models in seconds.

Method
Mean

Measure Simple linear Multiple linear Power
Exponential

Runtime x1 =objects x1 =features

MAE 0.017 0.041 0.009 0.032 0.033
Low Variance 0.087

RMSE 0.021 0.049 0.011 0.038 0.039

Laplacian Score 4.424
MAE 3.625 1.510 0.187 1.295 1.453
RMSE 4.822 1.960 0.229 1.559 1.761
MAE 139.523 77.251 11.192 56.749 70.658

SPEC 163.221
RMSE 183.213 94.154 14.095 67.328 83.991

MCFS 43.223
MAE 42.632 26.558 3.940 8.583 15.372
RMSE 59.515 33.614 4.834 12.782 18.696
MAE 10103 9439 1794 6092 2639

UDFS 7997
RMSE 15413 12960 2567 7800 4039

NDFS 10244
MAE 8556 5508 1585 4508 1867
RMSE 12146 7302 2169 5434 2814

table shows the true and predicted runtimes with a high number of objects or
features. This allows for a better and zoomed-in representation of the other
runtime predictions. Table 5 is similar to Table 3, but it describes the best
runtime prediction models applied on the real-world datasets instead of all the
runtime prediction models applied on the synthetic datasets.

Notice that these error scores have major flaws in capturing the performance
of the runtime prediction models on the real-world test data. This is mostly due
to the greatly varying dataset dimensions. There are many smaller datasets and
some bigger ones, as visible in Table 2. This distorts the means, and as a result,
the error measures do not accurately represent the performance of a model. A
better insight can be gained by scrutinizing the plots.

4.2 Runtime Analysis

In the following, we provide a brief description and analysis of the best runtime
prediction models for each UFS method applied to the datasets of Tables 1 and 2.

Low Variance For the Low Variance method, the influence of the number of
objects and features on the runtime is best represented by having the number
of data points on the x-axis, as shown in Figure 3. We see a mostly linear
relationship with some variation.

The error scores in Table 3 partially confirm this idea. The MAE and RMSE
scores for the simple linear regression model are 0.017 and 0.021, respectively,
but the power model has even lower error scores with 0.009 and 0.011. Although
the power model has better scores, a linear model might generalize better to
datasets with differing dimensions, whereas the power model can be overfitted
on the training data.

This is confirmed by testing both models on the real-world data visible
in Figure 4. Therefore, the model that best predicts the runtimes of the Low

62

Teun van der Weij, Venustiano Soancatl-Aguilar, Saúl Solorio-Fernández

Research in Computing Science 150(8), 2021 ISSN 1870-4069

Variance method in our experiment is:

ŷ = 1.833× 10−8x, (8)

where ŷ is the predicted runtime and x is the number of data points of a dataset.
Figure 4 and the corresponding Table 4 show that the runtimes are predicted
well, with the connotation that the predictors are consistently slightly higher
than the true runtimes.

Laplacian Score The Laplacian Score plot in Figure 1 shows a nonlinear
relation between the number of objects and the runtime. Additionally, it shows
that the number of features affects the runtime too, because bigger points have
higher runtimes (see Figures 1 and 2). Therefore, we suspect that the power
model will perform the best. Our error measures support this, since the error
scores for the power model are nearly seven times smaller than the nearest
competitor (see Table 3). Therefore, the model that best predicts the runtime
of the Laplacian Score method is:

ŷ = 3.335× 10−8x1.918
1 x0.418

2 , (9)

where ŷ again denotes the predicted runtime, x1 denotes the number of objects,
and x2 the number of features of a dataset. Figure 4 and Table 4 show that
the power regression model accurately predicts the runtimes of the Laplacian
Score method.

SPEC The SPEC plot in Figure 1 shows a similar pattern as the Laplacian
Score plot. We see a nonlinear relation between the number of objects and
runtimes, and we see that features have a clear influence on the runtime as
well. However, there seems to be more variation in runtimes, partially caused by
a relatively bigger influence of features on the runtime than with the Laplacian
Score method. We hypothesize that the power model will perform the best among
the models. This hypothesis is supported by the error measures for which the
power model has some five times lower scores than the nearest model, as shown
in Table 3. Therefore, the resulting prediction model for the SPEC method is:

ŷ = 3.507× 10−8x2.044
1 x0.776

2 , (10)

with the same definitions as with the Laplacian Score method. Similar to the
Laplacian Score method, Figure 4 and Table 4 show that the power regression
model accurately predicts the method’s runtimes.

MCFS We see in Figure 1 that the MCFS method shows a strong nonlinear
relation between objects and runtimes, with a seemingly minimal role of feature
numbers (also see Figure 2). Therefore, we hypothesize that the power model
suits the data best. Moreover, we see three outliers. We ran the experiment for
a second time, and the same three outliers remained. To improve generalization,

63

Runtime Prediction of Filter Unsupervised Feature Selection Methods

Research in Computing Science 150(8), 2021ISSN 1870-4069

we removed these three outliers to fit the models and calculate the MAE and
RMSE scores.

As we can observe in Table 3 the error scores provide support for our
hypothesis. The scores for the power model are 3.940 and 4.834 for MAE and
RMSE, respectively, where the closest contender is the Expobjects model with
MAE and RMSE scores of 8.583 and 12.782. Thus, the final prediction model
for the MCFS method is:

ŷ = 1.183× 10−8x2.564
1 x0.087

2 , (11)

again with ŷ denoting the predicted runtime, x1 denoting the number of objects,
and x2 denoting the number of features of a dataset. In Figure 4 we observe that
the runtimes of the MCFS are not predicted well for smaller object sizes, because
the model underestimates the effect of the number of features on the runtime.
However, the runtimes are predicted with more accuracy when the number of
objects increases (see especially Table 4).

UDFS In the UDFS plot in Figure 2 we see a nonlinear relationship between
feature numbers and runtimes. The number of objects seems to have a relatively
minor effect on the runtime. Lastly, there seems to be relatively much variation
as feature sizes increase. These observations lead us to suspect that the power
model performs best and that the Expfeatures will perform well too. This suspicion
is made more certain by the error measures in Table 3. The scores for the power
model are 1794 and 2567 for MAE and RMSE, and the scores for the Expfeatures
model are 2639 and 4039. These scores do fit the power model better, but, to
make a better substantiated choice, we plotted both models in Figure 4 and
show the extra information in Table 4.

In Figure 4 we see that for datasets with relatively low number of features, the
runtime predictions are quite accurate. However, when the number of features
increases, the prediction quality rapidly decreases. In Table 4 we see that for the
datasets with around 20,000 features, the runtime predictions are much larger
than the true runtimes. Predictions are especially inaccurate for the Expfeatures
model. Therefore, the runtime prediction model for the UDFS method is:

ŷ = 2.676× 10−11x0.000542
1 x3.902

2 , (12)

where the same definitions apply as with the last three models. Notice that in
contrast to the last three runtime prediction models, β1 is much lower than β2,
indicating that the number of features determines the runtime much more than
the number of objects. This is in line with the plots we see in Figures 1, 2,
3 and 4.

NDFS Similar to the UDFS method, the NDFS plot in Figure 2 shows a
relatively strong nonlinear relationship between feature numbers and runtimes,
with a relatively small effect of the number of objects on the runtime. NDFS

64

Teun van der Weij, Venustiano Soancatl-Aguilar, Saúl Solorio-Fernández

Research in Computing Science 150(8), 2021 ISSN 1870-4069

Table 4. Measured and predicted runtimes with a high number of objects or
features for the real-world datasets (Fig 4).

Method Dataset Objects Features
True

Model
Predicted

Methods
Predicted

Runtime Runtime Runtime

Low Variance Gisette 7000 5000 0.422 Simple linear 0.642 Power 0.914
Laplacian Score Gisette 7000 5000 41.008 Power 27.808 - -
Laplacian Score USPS 9298 256 17.335 Power 13.839 - -
SPEC Gisette 7000 5000 2092.370 Power 1882.422 - -
SPEC USPS 9298 256 414.148 Power 335.067 - -
MCFS Gisette 7000 5000 263.291 Power 179.319 - -
MCFS USPS 9298 256 332.579 Power 286.716 - -
UDFS SMK-CAN-187 187 19993 157422.626 Power 1,624,588 Expfeatures 20,309,840
UDFS GLI-85 85 22283 484025.000 Power 2,479,277 Expfeatures 41,182,695
NDFS SMK-CAN-187 187 19993 19170.060 Power 322,335 Expfeatures 4,223,331
NDFS GLI-85 85 22283 19163.363 Power 358,746 Expfeatures 6,274,883

seems to have less variance than UDFS. Again, we hypothesize that the power
model performs best and that the Expfeatures model will perform well too.

Similar to MCFS, for NDFS, some outliers were produced. We did not
consider these outliers for fitting the models and calculating the error scores,
as we did with the outliers in MCFS. Notice that these outliers are not too
problematic because they finish much quicker than regular predicted runtimes.
The number of outliers is noteworthy, however, with 7 out of 114 runtimes
classified as outlier. Running the experiment for a second time resulted in the
same outliers.

The error measures in Table 3 share the observation of the power model and
the Expfeatures model performing best. The scores for the power model are 1585
and 2169 for MAE and RMSE, and the scores for the Expfeatures model are 1867
and 2814. These scores do fit the power model better, but to further investigate,
we plotted both results of the runtime prediction models in Figure 4 and present
the extra information in Table 4.

Figure 4 and Table 4 show that both the power model and the Expfeatures
model do not predict the runtimes well. Table 4 shows that while the true
runtimes for two high dimensional datasets are around 19,000 seconds, whereas
the power predicts around 322,000 and 358,000 seconds respectively, and
the Expfeatures model predicts around 4,000,000 and 6,000,000, respectively.
Therefore, the power model predicts the runtimes best for the NDFS method,
with the model being:

ŷ = 4.890× 10−6 × x0.196
1 x2.412

2 (13)

where the same definitions and remarks apply as with the UDFS method.

65

Runtime Prediction of Filter Unsupervised Feature Selection Methods

Research in Computing Science 150(8), 2021ISSN 1870-4069

0.0 0.2 0.4 0.6 0.8 1.0
Data points 1e7

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200
Low Variance

True runtimes
Power model prediction
Simple linear Regression prediction

0 500 1000 1500 2000 2500
Objects

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Laplacian Score

0 500 1000 1500 2000 2500
Objects

0

20

40

60

80

100

120

140

SPEC

0 500 1000 1500 2000 2500
Objects

0

5

10

15

20

25

MCFS

0 2000 4000 6000 8000 10000
Features

0

25000

50000

75000

100000

125000

150000

175000

UDFS

True runtimes
Power model prediction
EL prediction

0 2000 4000 6000 8000 10000
Features

0

10000

20000

30000

40000

50000

60000

70000

NDFS

R
un

tim
e

in
 s

ec
on

ds

Fig. 4. Runtime results in seconds with objects as x-axis for each method. The
top legend describes the top four plots, and the bottom legend the bottom two.
The models that best predict a method’s runtime are shown as well. For more
details, see Section 4.1.

66

Teun van der Weij, Venustiano Soancatl-Aguilar, Saúl Solorio-Fernández

Research in Computing Science 150(8), 2021 ISSN 1870-4069

Table 5. The error scores for the best prediction models in seconds.

Method
Mean

Best model Error Score
Contender

Error Scores
Runtime Model

MAE 0.027 MAE 0.021
Low Variance 0.018 Simple linear

RMSE 0.009
Power

RMSE 0.002

Laplacian Score 0.473 Power
MAE 0.682

-
MAE -

RMSE 6.480 RMSE -
MAE 16.360 MAE -

SPEC 9.656 Power
RMSE 2055.675

-
RMSE -

MCFS 4.487 Power
MAE 7.771

-
MAE -

RMSE 340.712 RMSE -
MAE 137506 MAE 2118501.956

UDFS 10219 Power
RMSE 2.122× 1011

Expfeatures RMSE 7.155× 1013

NDFS 3950 Power
MAE 37653.890

Expfeatures

MAE 349876.063
RMSE 7.822× 109 RMSE 1.800× 1012

5 Discussion

In this section, we first discuss the performance of the runtime prediction models,
followed by the section on general runtime observations. Then, we address related
literature. Finally, we discuss some limitations of our research.

5.1 Performance of Runtime Prediction Models

The runtime prediction models performed better for the Low Variance, Laplacian
Score, SPEC, and MCFS methods than for the UDFS and NDFS methods. The
low error scores and near predictions presented in Tables 3, 4 and 5 and in Figures
1, 2, 3 and 4 illustrated the quality of prediction models for the four methods.
Especially relevant are Figure 4 and the associated Table 4, which indicate how
well the models trained on the synthetic datasets generalize to the real-world
datasets. Clearly, the runtime predictions are not perfectly accurate. However,
this was not the goal of this paper. More importantly, these predictions can give
users a priori runtime information of a method. Additionally, these predictions
expose the influence of the number of objects and features on the runtime, which
will be discussed in Section 5.2.

The performance of the runtime prediction models for the UDFS and NDFS
methods is worse than for the other four methods. Although the power model
predicts the runtimes of the synthetic datasets well, the prediction performance
on some real-world datasets decreases, particularly when the number of features
is high. In general, our four regression models fail to capture the influence
of the number of objects and features of a dataset on the runtime for both
methods. More specifically, we believe that the runtime prediction models for
UDFS and NDFS have low performance because of the following observation.
When the number of objects increases and the number of features is fixed, we see
a reasonably clear nonlinear relationship between an increase in the number of

67

Runtime Prediction of Filter Unsupervised Feature Selection Methods

Research in Computing Science 150(8), 2021ISSN 1870-4069

objects and the increase in the runtime. It is likely that our models would be able
to capture this interaction. However, this interaction depends on the number of
features too. For example, the difference in runtime between dataset A (2000,
1000) and dataset B (2500, 1000) is different between the runtime differences
in dataset C (2000, 2000) and dataset D (2500, 2000). Although the increase of
object numbers between A & B are the same as between C & D, the runtime
will not increase with the same amount (even while ignoring runtime differences
caused by the environment itself). Of course, we see a similar phenomenon when
the roles of objects and features are switched. Our models likely failed to capture
these important and more complex interactions. This deficiency becomes evident
when the number of objects and the number of features of a dataset greatly differ
from the synthetic training set, which is the case for some real-world datasets.
The prediction errors we see in Table 4 are likely the result of this deficiency.

5.2 Runtime Observations

The runtime prediction results are generally in line with the theory on univariate
and multivariate methods, which would suggest that the number of features is
less important for univariate methods than for multivariate methods. Whereas
univariate methods analyze the features separately, multivariate methods aim
to find an optimal subset of features. This requires solving the ”subset sum”
problem that gets increasingly difficult as the whole set of features increases
in size. Indeed, we observed that the number of features affects the runtimes
most for the UDFS and NDFS methods, which is not the case for the univariate
methods. An exception to this is the multivariate MCFS method, where the
number of objects has a stronger influence on the runtime than the number of
features. Furthermore, we clearly see differences in the order of runtimes.

The Low Variance and the Laplacian Score methods are the quickest methods
and can be employed to analyze large datasets. The Laplacian Score method is
particularly quick in analyzing highly dimensional datasets where the number
of objects is relatively low and the number of features is much higher. On the
other hand, the SPEC and MCFS methods are clearly slower than the previous
two methods, but in our experiment, they operated in the order of seconds and
minutes for larger datasets. Consequently, they can typically execute within most
time constraints of research projects. The SPEC method is best applied when the
number of objects of a dataset is not too high, while the number of features can
be large. The same holds for the MCFS method, although the number of features
has a relatively higher effect on the runtimes than with the SPEC method.

Lastly, the UDFS and NDFS methods are the slowest methods. Although
our models have low performance in predicting their runtimes, the runtime data
is still useful to provide runtime guidelines. In our environment, both UDFS and
NDFS take a couple of days to complete when the number of features exceeds
10,000. We have seen that the number of features has a strong linear effect on
the runtime; thus, the runtimes of these methods might easily take weeks and
months when the number of features exceeds 10,000. Do notice that this is based
only on datasets with around 100 objects. It is unknown what runtimes to expect

68

Teun van der Weij, Venustiano Soancatl-Aguilar, Saúl Solorio-Fernández

Research in Computing Science 150(8), 2021 ISSN 1870-4069

with different object sizes. Nonetheless, long runtimes should be considered when
these methods are applied on high-dimensional datasets.

5.3 Related Literature

As far as we know, this experiment is unique in the field of Unsupervised
Feature Selection. However, method runtimes have been examined in other
research fields, especially in optimizing job scheduling in high-performance
clusters [22, 25]. Random forest regression models often perform well in
these fields because they can take many independent variables into account.
However, we focus on two independent variables in our study. Moreover, random
forest has difficulties with extrapolating from training data, which in our case
means that the runtime predictions will not be accurate when datasets have
considerably different dimensions than the dimensions of synthetic training
datasets [22]. Unfortunately, we cannot train our models on all the potential
dataset dimensions users might have because of these two reasons; therefore, the
random forest algorithm is not suitable for this study.

On the other hand, we used a benchmarking approach in this paper, but
another possible approach was to focus even more on a mathematical analysis
of methods. The Big O notation is often used to represent the time and
space complexity of a method [26]. The Big O notation describes the general
computational operations that a method performs, but it ignores important
factors for runtime analysis, such as the machine, the programming language,
and the compiler the method runs in. Moreover, the time complexity is only
available for two out of the six methods, namely the SPEC and MCFS methods.
Still, time complexity analysis such as in Cai et al. [13] and Zhao & Liu [27]
can be useful to examine the interaction of object and feature numbers on the
runtime. In this study, we did use the time complexity of the SPEC and the
MCFS method to create runtime prediction models.

Finally, it is noteworthy that the runtime prediction for the UDFS and NDFS
methods can probably best be improved by analyzing the time complexity of the
methods by examining the original paper where the methods are presented (Yang
et al. [17] and Li et al. [18], respectively). However, the time complexity has not
been provided by the authors themselves and analyzing their time complexity
was out of the scope of this project.

5.4 Limitations

Our experiment is also subject to some limitations. Most notably, as we stated in
Section 3.2, generalizing the runtime findings from our experiment environment
to a user’s environment brings along complications. Although this was not part
of our research objective, it does interfere with the extrapolation of our findings
to the environment of a user. On the other hand, a missed insight that is relevant
to our research goal are the outliers of the MCFS and NDFS methods, visible in
Figures 1 and 2. It is unknown to us why exactly these outliers exist and the effect
it has on the clustering and classification performance. For the NDFS method,

69

Runtime Prediction of Filter Unsupervised Feature Selection Methods

Research in Computing Science 150(8), 2021ISSN 1870-4069

the outliers are less likely to be problematic, as the method analyzes much faster
than expected. The outliers for the MCFS methods can be problematic as the
runtime is multiple factors higher than expected.

Additionally, the models and their parameters do not necessarily represent
an optimal fit. It could be that other simple models, such as polynomial ones, fit
the runtime data better. As for the model parameters, Trust Region Reflective
algorithm, used to optimize the parameters in the nonlinear models, does not
converge to a global minimum [19]. Consequently, it could be the case that
with different initial parameter guesses, the models would have better-fitted
parameters. Furthermore, the effect of the hypercube size multiplication factor,
used in generating the synthetic datasets, on the runtime is unknown. It could
be that a higher factor speeds up some methods when, for example, pseudo-class
labels are learned with spectral analysis in the NDFS method.

Lastly, the effects of method parameters, such as the number of selected
features and the number of nearest neighbours, used in the MCFS method, for
example, are left unstudied.

6 Concluding Remarks and Future Work

In this study, we have presented runtime prediction models for six relevant
and classical filter UFS methods of the state-of-the-art. The runtime prediction
models and the general guidelines for each of the six methods can be particularly
useful for professionals and practitioners in this research field. Moreover, our
results, in line with previous work on the evaluation of filter UFS methods [7],
could be useful to assist users in choosing an appropriate method for a particular
problem. From the results presented in the previous sections and the analysis
performed, we contribute to the runtime knowledge of filter UFS methods by
providing some insights and guidelines:

– The Low Variance, Laplacian Score, SPEC, and MCFS methods are much
faster than the UDFS and NDFS methods.

– The Low Variance method is the quickest method, which can be applied on
large datasets in most cases without runtime problems. The runtime is best
determined by the number of data points of a dataset.

– The Laplacian Score method can be applied on large datasets as well, and
is especially efficient in analyzing high-dimensional datasets.

– The SPEC method is considerably slower than the previous two methods,
but its runtimes will still often be manageable. The SPEC method is best
at analyzing high-dimensional datasets. However, a large number of objects
increase the runtime considerably.

– The MCFS method is the fastest multivariate method, even faster than the
univariate SPEC method. Surprisingly, the runtimes of the MCFS method
are most influenced by the number of objects, meaning that it handles
high-dimensional datasets well.

70

Teun van der Weij, Venustiano Soancatl-Aguilar, Saúl Solorio-Fernández

Research in Computing Science 150(8), 2021 ISSN 1870-4069

– The UDFS method is substantially slower than the previous four methods.
UDFS should be used carefully with large datasets, especially when datasets
have many features (roughly > 10, 000).

– The NDFS method has similar runtimes and should be used with the same
care as the UDFS method.

Finally, future work of this research includes the following:

– Analyzing the time complexity of the UDFS and NDFS methods and
building corresponding runtime prediction models to improve the current
predictions.

– Performing experiments on datasets with different shapes to generalize and
improve the general performance of the runtime prediction models.

– Investigating runtime prediction in other environments could improve the
usability of our research. Future research similar to, or in combination with,
a paper by Sidnev [28] might be fruitful.

– A similar study like ours can be used to examine the runtimes of other filter
methods, and it can be extended to wrapper and hybrid (embedded) UFS
methods as well.

Acknowledgments. We want to thank the Center for Information Technology
of the University of Groningen for their support and for providing access to the
Peregrine high-performance computing cluster.

References

1. Iguyon, I. & Elisseeff, A. An introduction to variable and feature selection
2003.

2. Bellman, R. Combinatorial processes and dynamic programming. https :
//apps.dtic.mil/sti/pdfs/AD0606844.pdf (1958).

3. Li, J. et al. Feature selection: A data perspective 2017. arXiv: 1601.07996.
https://doi.org/10.1145/3136625.

4. Alelyani, S., Tang, J. & Liu, H. Feature selection for clustering: a review
(eds Aggarwal, C. C. & Reddy, C. K.) 29–60. isbn: 9781728128474 (Taylor
& Francis, 2014).

5. Liu, L., Kang, J., Yu, J. & Wang, Z. A comparative study on unsupervised
feature selection methods for text clustering. Proceedings of 2005 IEEE
International Conference on Natural Language Processing and Knowledge
Engineering, IEEE NLP-KE’05 2005, 597–601 (2005).

6. Solorio-Fernández, S., Carrasco-Ochoa, J. A. & Mart́ınez-Trinidad, J. F.
A review of unsupervised feature selection methods. Artificial Intelligence
Review 53, 907–948. issn: 15737462. https://doi.org/10.1007/s10462-019-
09682-y (2020).

7. Solorio-Fernández, S., Carrasco-Ochoa, J. A. & Mart́ınez-Trinidad, J. F.
A systematic evaluation of filter Unsupervised Feature Selection methods.
Expert Systems with Applications 162. issn: 09574174 (2020).

71

Runtime Prediction of Filter Unsupervised Feature Selection Methods

Research in Computing Science 150(8), 2021ISSN 1870-4069

https://apps.dtic.mil/sti/pdfs/AD0606844.pdf
https://apps.dtic.mil/sti/pdfs/AD0606844.pdf
https://arxiv.org/abs/1601.07996
https://doi.org/10.1145/3136625
https://doi.org/10.1007/s10462-019-09682-y
https://doi.org/10.1007/s10462-019-09682-y

8. Fredriksson, T., Mattos, D. I., Bosch, J. & Olsson, H. H. Data
Labeling: An Empirical Investigation into Industrial Challenges and
Mitigation Strategies in Lecture Notes in Computer Science (including
subseries Lecture Notes in Artificial Intelligence and Lecture Notes
in Bioinformatics) 12562 LNCS (Springer Science and Business
Media Deutschland GmbH, 2020), 202–216. isbn: 9783030641474.
https://doi.org/10.1007/978-3-030-64148-1%7B%5C %7D13.

9. Dong, G. & Liu, H. Feature engineering for machine learning and data
analytics 192–194. isbn: 9781138744387 (Taylor & Francis, 2018).

10. Goldberg, Y. & Orwant, J. A Dataset of Syntactic-Ngrams over Time from
a Very Large Corpus of English Books. *SEM 2013 - 2nd Joint Conference
on Lexical and Computational Semantics 1, 241–247 (2013).

11. Harper, F. M. & Konstan, J. A. The movielens datasets: History and
context. ACM Transactions on Interactive Intelligent Systems 5, 1–19.
issn: 21606463 (2015).

12. Bolón-Canedo, V., Sánchez-Maroño, N. & Alonso-Betanzos, A. Artificial
Intelligence: Foundations, Theory, and Algorithms Feature Selection for
High-Dimensional Data - Chapter 3: A Critical Review of Feature Selection
Methods 1–10. isbn: 9783319218571. www.springer.com/series/ (Springer,
2016).

13. Cai, D., Zhang, C. & He, X. Unsupervised feature selection for
Multi-Cluster data. Proceedings of the ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, 333–342 (2010).

14. Dy, J. G. & Brodley, C. E. Feature Selection for Unsupervised Learning
tech. rep. (2004), 845–889.

15. He, X., Cai, D. & Niyogi, P. Laplacian Score for feature selection. Advances
in Neural Information Processing Systems, 507–514. issn: 10495258 (2005).

16. John, G. H., Kohavi, R. & Pfleger, K. Irrelevant Features and the Subset
Selection Problem. Machine Learning Proceedings 1994, 121–129 (1994).

17. Yang, Y., Shen, H. T., Ma, Z., Huang, Z. & Zhou, X. l2,1-Norm
regularized discriminative feature selection for unsupervised learning.
IJCAI International Joint Conference on Artificial Intelligence, 1589–1594.
issn: 10450823 (2011).

18. Li, Z., Yang, Y., Liu, J., Zhou, X. & Lu, H. Unsupervised feature selection
using nonnegative spectral analysis. Proceedings of the National Conference
on Artificial Intelligence 2, 1026–1032 (2012).

19. Branch, M. A., Coleman, T. F. & Li, Y. Subspace, interior, and conjugate
gradient method for large-scale bound-constrained minimization problems.
SIAM Journal of Scientific Computing 21, 1–23. issn: 10648275 (1999).

20. Hastie, T., Tibshirani, R. & Friedman, J. The Elements of Statistical
Learning. The Mathematical Intelligencer 27, 241–247. issn: 03436993
(2017).

21. Arlot, S. & Celisse, A. A survey of cross-validation procedures for model
selection. Statistics Surveys 4, 40–79. issn: 19357516. arXiv: 0907 .4728
(2010).

72

Teun van der Weij, Venustiano Soancatl-Aguilar, Saúl Solorio-Fernández

Research in Computing Science 150(8), 2021 ISSN 1870-4069

https://doi.org/10.1007/978-3-030-64148-1%7B%5C_%7D13
www.springer.com/series/
https://arxiv.org/abs/0907.4728

22. Hutter, F., Xu, L., Hoos, H. H. & Leyton-Brown, K. Algorithm runtime
prediction: Methods & evaluation. Artificial Intelligence 206, 79–111. issn:
00043702. www.elsevier.com/locate/artint (2014).

23. Chai, T. & Draxler, R. R. Root mean square error (RMSE) or mean
absolute error (MAE)? -Arguments against avoiding RMSE in the
literature. Geoscientific Model Development 7, 1247–1250. issn: 19919603
(2014).

24. Pedregosa, F. et al. Scikit-learn: Machine Learning in Python. Machine
Learning Research 12, 2825–2830 (2011).

25. McKenna, R., Herbein, S., Moody, A., Gamblin, T. & Taufer, M. Machine
learning predictions of runtime and IO traffic on high-end clusters.
Proceedings - IEEE International Conference on Cluster Computing,
ICCC, 255–258. issn: 15525244 (2016).

26. Russel, S. & Norvig, P. Artificial Intelligence A Modern Approach (4th
Edition) 9. isbn: 9788578110796 (Pearson, 2020).

27. Zhao, Z. & Liu, H. Spectral feature selection for supervised and
unsupervised learning. ACM International Conference Proceeding Series
227, 1151–1157 (2007).

28. Sidnev, A. A. Runtime prediction on new architectures. ACM International
Conference Proceeding Series 23-24-Octo, 1–6 (2014).

73

Runtime Prediction of Filter Unsupervised Feature Selection Methods

Research in Computing Science 150(8), 2021ISSN 1870-4069

www.elsevier.com/locate/artint

	Runtime Prediction of Filter Unsupervised Feature Selection Methods
	Introduction
	Filter UFS Methods
	Univariate Methods
	Multivariate Methods

	Methodology
	Datasets
	Runtime Prediction Models
	Simple linear regression
	Multiple linear regression
	Power regression
	Exponential regression

	Model Evaluation Criteria
	Software and Hardware Specifications

	Experimental Results
	Description of Figures and Tables
	Runtime Analysis
	Low Variance
	Laplacian Score
	SPEC
	MCFS
	UDFS
	NDFS

	Discussion
	Performance of Runtime Prediction Models
	Runtime Observations
	Related Literature
	Limitations

	Concluding Remarks and Future Work

